
I 

NASACONTRACTOR _ 

REPORT 

LOAN COPY: F?ETlJKN TO 
AFWL -I-ECHN:ICAL LiE!%El’P\B 

KIRTLAND AFf3,N. M2 ’ 

ANALYTICAL STUDY OF ACOUSTO/OPTICAL 
HOLOGRAPHY - INTERFACING METHODS 
FOR ACOUSTICAL AND OPTICAL 
HOLOGRAPHY ND’? RESEARCH 

EL M. A. El-Smz 

Prepared by 

EL-SUM CONSULTANTS 
Atherton, Calif. 9402 5 

for George C. MarshaN Space Flight Center 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, Di C. . DECEMBER 1976 



_~ ~~ - 

TECH LIBRARY KAFB, NM 

-- 
1. REPORT NO. 12. GOVERNMENT ACCESSION NO. 3. RECIPIENT’S CATALOG NO. 

NASA CR-2775 --_~~_~ 
P TITLE AND SUBTITLE 

I I 
15. REPORT OATE 

Analytical Study of Acousto/Optical Holography - Interfacing December 1976 
Methods ?or Acoustical and Optical Holography NDT Research 

6. PERFORMING ORGANIZATION CODE 

7. AUTHOR(S) 

H. M. A. El-Sum 
3. PERFORMING ORGANIZATION NAME AND ADDRESS 

El-Sum Consultants 
74 Middlefield Road 
Atherton, California 94025 .- 

2 SPONSORING AGENCY NAME AND AOORESS 

6. PERFORMING ORGANI RATION REPOR r i 

M-197 
10. WORK UNIT, NO. 

11. CONTRACT OR GRANT NO. 

NAS8-31783 
,S. TYPE OF REPORi’ 6 PERIOD COVEREI 

Contractor 
National Aeronautics and Space Administration 
Washington, D. C. 20546 1.1. SPONSORING AGENCY CODE 

15. SUPPLEMENTARY NOTES 

Prepared under the technical monitorship of the Physics and Instrumentation Division, 
Space Sciences Laboratory, Marshall Space Flight Center - _; ~~. ..- ----. 

6. ABSTRACT 
This report covers a study of the international status of the art of acousto-optical imaging 

techniques adaptable to nondestructive testing and, more important, to interfacing methods for 
acoustical and optical holography in nondestructive testing research. Evaluation of 20 different 
techniques encompassed investigation of varieties of detectors and detection schemes, all of 
which are described and summarized. Related investigation is reported in an Appendix. The 
report presents important remarks on image quality, factors to be considered in designing a 
particular system, and conclusions and recommendations for extension of this work. Three 
bibliographies are included. 

Compatible systems to be used with the MSFC hybrid system (optical, acoustical, and 
correlation) are a Bragg diffraction (direct optical-acoustical interaction) scheme and the 
electronically focussed and scanned piezoelectric array. Both systems have sensitivity 
approaching 10e9 to IO-” W/cm2 and resolution approaching the acoustical wavelength in the 
tested material, are capable of real-time display, and can be designed for use in either a pure 
optical or an acousto-optical mode of operation. At the same time, a portable acoustic probe, 
akin to the probe used in medical diagnosis, can be designed for testing large objects on site. 

7: KEY WORDS 1.6. DISTRIBUTION STATEMENT 

Category 35 

9. SECURITY CLASSIF. (of thh raPti) 20. SECURITY CLAI il F. (of thh P-V) 21. NO. OF PAGES 22. PRICE 

Unclassified I Unclassified 96 1 $4.75 

* For sale by the National Technical Information Service, Springfield. Virginia 22161 





FOREWORD 

This is the final reporting on a six man-month study of the state of the 
art of acousto-optical holography and its application in nondestructive testing 
(NDT). The project was funded by MSFC-NASA under contract NAS8-31783. 

The goal of this project, in a broad sense, was to investigate the inter- 
facing methods for acoustical and optical holography in NDT research in order 
to identify the acoustical holography schemes compatible for integration in a 
hybrid system utilizing other schemes (optical and correlation) for testing 
objects nondestructively, as envisioned by the MSFC Optics and Electra-Optics 
Branch (Figure 1). For completeness, the investigation encompassed a survey 
of various techniques of imaging, testing, and detection of flaws in materials 
with visual radiation, acoustics, x-rays, electrons, and infrared. However, 
only the nonholographic ,acousto-optical techniques which may compete favorably 
with the holographic schemes are included in this report. The in-depth study 
concentrated on the international state of the art of visualization of acoustic 
imaging, particularly with holography, and on evaluating the various techniques 
of transducing the acoustical information into optical information. 
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CHAPTER I 

GENERAL IXTRODUCTION 



The potential of acoustical holography as a diagnostic tool in 

nondestructive testing was well recognized ever since the first success- 

ful demonstration of forming an acoustical hologram and reconstructing, 

it with coherent visible light. (1,2) In fact, the vigorous development 

of acousto/optical holographic techniques for material nondestructive 

testing is second only to the application of these techniques in the 

biological and medical field, as evidenced from the yearly symposia on 

Acoustical Holography, (3) the IEEE ultrasonics, (4) and other national 

and international conferences. Technological advances, inspired origi- 

nally by acoustical holography, have led in many cases to further 

simplification of the two-stage acoustical holography to a real-time 

acoustical imaging, as will be discussed later. 

Among the pertinent advantages of acoustical holography in NDT are: 

(1) having a permanent 2-D record of a 3-D image (both outer 

shape and internal structure of the object), 

(2) obtaining a good lateral resolution without the need for 

complex ultrasonic imaging optics, 

(3) obtaining a good depth resolution without the need for very 

short pulses of ultrasonic energy, 

(4) detection of very weak ultrasonic scattering regions, too 

weak to be detected by other methods, 

(5) measuring the degree of material uniformity by considering 

the hologram as an interferogram, 

(6) measuring the uniformity of the tested object before and 

after a change in its environment (such as temperature, 

pressure, etc.), and 
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(7) converting the acoustical information into optical information 

which may be easier to interpret directly by the eye or by the 

use of well established optical techniques. 

However, acousto/optical imaging capabilities have certain limitations 

and what may be considered disadvantages. As an illustration, the follow- 

ing examples are enumerated: 

(1) distortion due to the change in wavelength (from a long 

acoustical wave Xs which probes the object and forms the 

hologram, to a much shorter light wave XL to reconstruct a 

visible image). See the discussion in Appendix I, pp. A-4, 

(2) the speckle effect produced by the coherent nature of the 

reconstructing light, and the limited aperture of the 

hologram. 

(3) at certain angles of incidence,objects, opaque to sound 

waves, become transparent to such waves and hence the intro- 

duction of possible misinterpretation of the image. 

(4) nonlinearity of sound propagation introduces distortion in 

the phase of the reflected waves, particularly with high 

amplitude and frequency. 

(5) acoustic transducers usually have an excess of 100 dB (a 

factor of 100,000) range of pressure amplitudes, while the 

intensity modulated oscilloscope can only display about 

20 dB (a factor lo), and photographic films have a dynamic 

range of only about 10 dB. (109) 'Thus to display both large 

and small acoustic information simultaneously, it is neces- 

sary to use amplitude compression technique or use digitizing 
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techniques and computer processing. 

(6) distortion due to mechanical instability of tested object or 

to unsteady environment, in which case special mounting (51 

may be neeced. 

blast of these limitations can be overcome. They are mentioned 

merely to emphasize the need for extreme care to correctly diagnose the 

tested object using the acousto/optic holographic technique. Further- 

more, it shows the necessity of using the acousto/optical testing as a 

complement to other testing means such as optical, and correlation. 

.4coustic frequencies ranging from 100 KHz to 10 GHz have been used 

in NDT [see Appendix A, pp. A-6, Table 4-111; the choice of the proper 

frequency depends upon the material of the object to be used, and the 

required depth of penetration of the probing wave, since the attenuation 

of such wave is proportional to the square power of the frequency. 

Hence usually the normal NDT of thick objects are limited to the acoustic 

frequency range of 100 KHz to 10 MHz, while the range 10 MHz to 10 GHz 

is used in ultrasonic microscopy where the material is quite thin (of 

the order of micrometers) . The latter will not be treated extensively 

in this report; however, this does not diminish its importance in areas 

like the study of the theory of crack development in materials. New 

materials and/or techniques (e.g., photopolymer films, pyroelectric 

conversion layers, electrostatic transducers, crystalline solid thin 

layer of CoC12*6 H20, ultrasonic tomography, zone plate focussing, 

electronic focussing and scanning of phased arrays) still in the develop- 

ing state, are described in Chapter II, and evaluated in Chapter III. 
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CHAPTER II 

ACOUSTICAL IMAGING SYSTEMS 



2.1 Introduction 

An acoustical imaging system consists, in general, of: 

. an insonifier 

. the object 

. a lens (not needed in some systems) 

. a detector or transducer 

. a display or recorder (which may be the detector itself). 

All of these components are usually immersed in a water tank to minimize 
* 

the acoustical impedence mismatch. Some of these components may be a 

simple one element, a composite structure, or a collection of several 

elements, depending on the operational function of the whole system. 

There may be, for example, more than one insonifier, as in holography; 

the lens may be eliminated in some holographic arrangements, or if the 

object is in contact with the detector; the detector itself may be (but 

rarely in a practical system) a simple chemical emulsion, a liquid 

crystal, a composite of deformed liquid or solid surface and a scanning 

laser or electron beam, a sandwich of several materials (e.g., piezo- 

electric and electroluminescence) etc.; the visual display of the 

acoustical information is converted into optical information via a 

vidi con camera, an optical telescope, or a CRT. There is quite an 

overlap between the display subsystem and the detection techniques that it 

is often difficult to separate the two. 

* Acoustical imaging reveals the change in acoustical impedance in 
the object, and hence depends on the density of the material to be 
imaged and the acoustic velocity yithin this material. This is different 
from x-ray imaging which depends on the electron density and atomic 
number of the material; electron beam images (as in electron microscope) 
reveals*only the surface or near surface structure, and depends on the 
atomic. density of the material; optical images reveal only the outer 
shape of the object. 
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The different components of an acousto/optical system are arranged 

in a variety of ways, dcpcnding on whether the object is to be seen in a 

transmission or a reflection mode. In the transmission mode the object 

hides the detector from the insonifying source. If the object is in 

touch with the detector, the lens is not needed and we get an arrangement 

akin to a contact print.in optical or x-ray photography. However, if 

the object is separated from the detector then a lens is needed between 

the two to cast a sharp image on the detector; otherwise, if there is 

no lens, the shadow cast on the detector may be a diffused shadow, or an 

on-axis (Gabor type) hologram. An off-axis acoustic hologram may be 

formed if the shadow of the object cast on the detector is biased by 

another coherent acoustic wave (from another insonifier tuned to the 

same frequency) which falls obliquely on the same detector. In the 

reflection mode arrangement, the object, insonifier and detector, are 

not in a straight line. The scattered wave from the object may be 

focussed on the detector by a lens; or, in the absence of a lens, an 

off-axis hologram is produced. Here again, a second reference acoustic 

wave may be used, particularly if an in-focus hologram is to be made. 

In an earlier study (summarized in Appendix A) we broadly classi- 

fied the various systems, mainly according to the detection-display 

scheme. Now, we shall proceed to expound the various techniques, con- 

centrating mainly on those most applicable to NDT. 

* Such a hologram is produced only if acoustic radiation from the 
same source falls on the detector (without passing through the object) 
to provide the reference wave. It is assumed that coherent acoustic 
waves are used to insonify the object. 
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2.2 Liquid Surface Deformation (Static Ripples) (271 

This method of acoustic image conversion and the electron-beam 

scanning tube of Sokolov are the earliest to be conceived for real-time 

visualization of ultrasonic images. (11,121 When an acoustic image is 

focussed onto the liquid surface it causes the surface to elevate at 

each point until equilibrium is attained by the restoring forces of 

surface tension and gr.avity. The relief pattern formed in this way is 

an analog of the pattern of acoustic intensity incident on the surface. 

The deformed fluid surface serves.as an optical phase-object, and a 

visible representation of the acoustic image is produced by reflecting 

1 ight from, or refracting it through, the surface, using one of several 

phase-contrast imaging techniques. This technique has recently been 

revived in acoustic holography. 11,2,12,13) The modern version (used 

commercially) is illustrated in Figure 2, which is self-explanatory. 

Refer to Appendix A, pp. A-7 - A-10 for more discussion. 

Instead of the coherent acoustical reference beam, Green (15) used 

a wire grating close to the liquid surface on which the acoustic image 

of the object is immersed. In this way the undesired high frequency 

ripples are reduced considerably. Both arrangements produced images of 

comparable quality. 

Another improvement was made by N. K. Sheridan, (14) to amplify the 

ripples, more at the high frequency end than the low frequency one, and 

hence reduce the low frequency noise and improve the real-time image 

visualization. He used a thin layer of a dielectric liquid (which may 

have conducting or insulating su.rface) placed in a strong electric field. 

Experimental verification of the idea revealed pictures no better than 

8 
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Figure 2. Schematic diagram of the basic arrangement for 
in-focus, real-time holography with the liquid 
surface deformation method. The object and 
reference insonifiers are immersed in a large water 
tank. A sharp image of the object is projected on the 
surface of the small tank (containing a low surface 
tension liquid), and is biased by the coherent 
reference wave to form an in-focus hologram in the 
form of ripples on the surface. Incident from 
above is a light beam from an unfiltered 
super pressure mercury vapour source. Its diffracted 
components are filtered and viewed in real-time 
by the viewing optics. 
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Brenden’s and Green’s, but the sensitivity may have been increased. 

This work has been discontinued. 

The advantages of this technique are its 

(a) simplicity 

(b) moderate sensitivity (O.OOiS W/cm2 is practical; 10 -9 W/ cm2 

highly theoretical (17) 

(c) good resolution (0.07” voids in 4” thick steel and 0.03” 

voids in 1” Al have been reported) (16) 

(4 capacity for real-time display 

On the other hand, this scheme is most suited for Gabor-type, near on- 

axis holography because of the limited frequency response of the liquid 

surface. Depending on the surface tension of the liquid the low and 

high spatial frequency cut-offs are at about 1 cycle/cm and 20 cycle/cm 

respectively. Furthermore, the highest acoustic frequency that can be 

used is about 10 FMz (limited by the surface tension of the liquid) and 

the lowest usable acoustic frequency is about 0.5 MHz (limited by the 

capillary forces giving way to gravitational forces). 

2.3 Bragg- Diffraction or Direct Sound-Light Interaction (18) 

The operational principle of Bragg-diffraction imaging is based 

upon the diffraction of coherent light by acoustic waves when proper 

conditions are met. A basic schematic arrangement of the system is 

shown in Figure 3. The object is placed on a membrane in the water 

filled Bragg acoustic cell, and insonified in the vertical direction. 

The laser beam interacts with the acoustic wave propagating in the 

acoustic cell. Two spherical lenses collimate the laser beam, which is 

then focussed by a cylindrical lens onto the line Pl. Bragg diffraction 
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Figure 3. Schematic diagram of Bragg diffraction acoustical imaging system. 
Coherent light from the laser interacts with the acoustic wave in the 
Bragg acoustic cell. The light and acoustic waves are propagating 
perpendicular to one another. Visible image is displayed on the TV monitor . 



of the light takes place in the acoustic cell. Two first -0rdcr frequency 

shifted Bragg-diffracted light beams, I and I I, and the zero-order light 

at its original frequency, are projected onto plane P 2’ Only one of the 

diffracted beams is allowed through a second cylindrical lens for aspect 

ratio correction and is projected onto a vidicon tube for real-time 

television display. 

The angle of diffraction in .this scheme is a function of the ratio 

of the light ltyavelength to the acoustic wavelength, according to the 

simple equation: 

xL Sin 8 = 2x (1) 
S 

where 8 is half the angle of diffraction. It is therefore desirable to 

use the highest possible acoustic frequency. Frequencies in the range 

of 10 to 100 MHz have been used. At the lower frequencies, the produced 

images alriays suffer from the scattering of the direct beam. To over- 

come this, an ingenious scheme was used, where the image is recorded 

with a biasing light wave from the laser. This recording will then 

carry the desired image superimposed on a hologram of the direct beam 

(since the diffracted light has a different frequency from the original 

laser light). The recording can then be reconstructed in the normal way 

and the desired image can be filtered out. 

This technique demonstrated its usefulness in NDT. However, it 

needs the immersion of the object in water. To eliminate this in order 

to test objects in air, R. A. Smith devised the arrangement shown in 

Figure 4. Electric energy which generates the sound is also sent to a 

delay line that feeds an electronic shutter controlling the emission 

0 
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Figure 4. Block diagram of pulsed Bragg imaging system 
for NDT of material that must be kept dry (i.e. not 
t0 be immersed in the water filled Bragg cell). 
The object is placed in air against the polyethylene 
membrane of the Bragg cell. The pulsed light from 
the laser is delayed so that it passes through 
Bragg cell only when the acoustic pulse is reflected 
upwards from the object. The delay time determines 
the plane of the object to be imaged, and the 
thickness of such a plane is determined by the duration 
of the laser light pulse. 

13 



of laser light. Uy pulsing the laser at some given time, subsequent 

to the gcncrntion of sound, reflected sound will be returned from a 

specific distance within the object viewed. At a later time, the sound 

present in the Rragg cell would be reflected from a greater distance in 

the obj ect . Consequently, the image wi 11 be a replica of objects located 

at ever increasing distances as time proceeds . The duration of the laser 

light pulse is made sufficiently short to have a negligible effect on the 

size of the range interval viewed. The range interval is one-half the 

duration of the sound pulse multiplied by the velocity of sound in the 

material inspected. Flaws outside this range interval will be rejected 

from view. Flaws may be separated which are as close together as pulse 

rise or fall times will allow. A complete inspection of an object would 

require repetitive pulsing of a sound transducer with repetitive illumi- 

nation from the laser using sound pulses and laser pulses which are 

repeated with increasing delay after a given image plane has been 

inspected. Pictures have been published (231 using this technique with 

an acoustic frequency of 18.7 MHz, of holes in Al block, silicon rubber 

strips on Al, etc. 

The resolution in this arrangement depends on the acoustic wave- 

length Xs the distance of interaction D in the Bragg cell, the angular 

extent ZCY of the converging light, the distance R between the object 

and light column, the height H of the light column in the vertical 

direction, and the width W of the light cone. The horizontal and 

vertical resolutions, 6h and 6v respectively, are different: 

14 



6 h = 

! 

* xs Rii- for R > 2 SFn cc 

AS 
2 Sin cc for R < 2 S-n c1 t 

(21 

As 
Rii- 

for R = H 

6v = 

A for . t R << H 

The maximum number of resolution cells occurs when the object is 

adjacent to the light column. In this case the number of these cells 

in the vertical direction is equal to H (expressed in terms of As). 

In the horizontal direction, the number of resolution cells is 

Nh < $ 
S 

(4) 

Thus for As = 0.075 mm, 1S = 25 mm and H = 100 mm, Nh is less than 

333. 

The advantage of the Bragg Diffraction scheme are: 

(1) Extreme simplicity 

(2) Sensitivity (comparable to the surface deformation technique) 

(3) High resolution (due to the use of high acoustic frequencies 

and which may approach As in an idealized system; 3 As has 

been reported (22)) . 

(4) Capacity for real-time display. 

On the other hand, the field of view is rather limited and although the 

system can be used for NDT, it is most suited for microscopy. 
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2.4 Laser Beam Scanning (24,25,26,28,100,101) 

In this technique a scanning laser beam is used to effect optical 

readout of the acoustic information which is present in the form of 

dynamic ripples on solids or liquids. It is mostly limited to acoustic 

microscopy because it has an extremely limited aperture, due to the 

limitation of the angular deflection of the laser beam. It has not been 

used except for imaging.very thin samples, mostly biological, using 

acoustic frequencies near 100 MHz. Interested readers are referred to 

the literature referenced above, and to Appendix A, pp. 11. 

It has demonstrated its real-time operation capability using 

100 MHz, displaying simultaneously the acoustic and optic images of the 

tested samples (25 urn thick) in an arrangement shown in Figure 5. The 

measured sensitivity of this technique is 10 -3 W/cm', while theoretically 

it should reach about 10 -' W/cm'. 

It has recently been reported, however, that displacements were 

measured of the order of 

acoustic frequency of 10 

using a moving mirror to 

to measure the radiation 
7, 

magnitude of 0.07 A over 15 cm aperture with 

>Hz CZ9) . Argon laser was used for scanning, 

study biological tissues, 6 urn thick, and also 

pattern of acoustic transducers. This system 
3 

sensitivity was lo-" W/cm'. 

2.5 Electron Beam Scanning of Deformed Surface (30) 

Instead of the'laser beam scanning, discussed in the previous 

section, electron beams can be modulated in phase when they scan a 

photocathode on which the acoustic object-wave (focussed, unfocussed, 

or biased by a reference wave) is projected. This scheme is thus capable 

of displaying either a hologram or its optical reconstruction, depending 

16 
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AMPLIFIER ACOUSTIC 
IMAGE 

OPTICAL 
IMAGE 

Figure 5. Laser beam scanning arrangement. The laser beam, 
reflected from the mirror, scans the acoustic 
field (in the sound cwll) to be visualized. 
The exit pupil of the deflector is focused on 
the knife edge, and hence the position of the 
light beam remains independent of the instaneous 
scan angle and depends only upon the surface 
distortion in the sound sell. The motion of the mirror 
causes the light intensity to be modulated (since 
the knife edge is arranged to block half the light 
beam). This intensity modulated light is collected 
by a photodiode and the resulting electrical signal, 
which is coherent with the local sound pressure, is 
amplified, filtered, detected, and fed into a TV 
monitor. The system is also capable of producing an 
optical image of the specimentin the sound cell) 
and display it on an adjacent TV monitor. 
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on the relative ,location of the photocathode in the system s 

2.6 Sokolov Image Tube Converter (31,32,37,38,63) 

This is one of the earliest acousto/optical image converters. 

Such a tube is shown as part 11 of Figure 6. 0 It consists of a 

t rans ducer 0 5 (a piezoelectric crystal) on which the acoustic image is 

proj ected, creating an electric potential pattern of that image. An 

electron beam scans the crystal and produces modulated secondary 

emission which records the image either directly on a photographic film, 

or projects it on the face of a CRT or a TV monitor. The arrangement 

shown in Figure 6 is capable of displaying a direct image of the object, 

its on-axis hologram or off-axis hologram which may be reconstructed 

later with coherent laser light in the normal fashion. It has also 

been used to form holograms with simulated electronic reference beam 
(32,33,34) and temporal holograms. (35,361 

The advantage of this technique lies in both the high sensitivity 

(lo-g W/cm2) of the detected signal and the speed of scanning (30 frames 

per second). On the other hand, it has a limited angular field of 

view (5 to 15 degrees from the perpendicular to the transducer) and 

limited resolution. For higher resolution, the transducer should be 

as thin as possible, but the thinner it is, the weaker it will be mech- 

anically and hence the smaller will be the aperture. Moreover, the 

transducer should operate at its resonance frequency, which means that 

the transducer thickness should be of the order of half the acoustic 

wavelength. All these parameters are related according to the equation 

of the minimum resolvable distance 
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Figure 6. Sokolov image tube set up for acousto-optical 
imaging. Immersed in the water tank (1) are 
two acoustic transducers(2) fed by electronic 
generator (3). Acoustic beams from the 
transducers (2) impinge upon quartz (5) which 
is the face of the image tube (11). One of the 
beams is scattered by the object (4) and the 
other is the reference beam. Thus an acoustic 
hologram is formed on (5) in the form of an 
electric potential pattern across (5). The 
electron gun (6) scans (S), inducing secondary 
emission which is multiplied by the electron 
multiplier(7), amplified by (8) and finally 
displayed on a TV monitor (10). Rlock (9) 
represents the electronic circuits for electron 
beam generation and deflection. 
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6(mm) = 2.86 
Acoustic frequency (Mllz) 

Resolutions of 3 to 5 times the acoustic wavelength have been reported (39) . 

Again, because of the mechanical rigidity, frequencies higher than about 

10 MHz are not used. The interest in improving this image converter 

(because of its sensitivity and real-time capability) is continuing. 

All the efforts are concentrated on developing larger and thinner face 

plates. These special designs (37938) extend the common quartz face 

plate’s diameter from 5 cm, used with 1 MHz, to 11.5 cm, used with 2 MHz, 

and even to 30 cm, used with 20 MHz. These results were attained by 

mechanically strengthening the piezoelectric quartz face plate (37) by a 

metal grid and/or modifying the electronic scanning scheme of the face 

plate. 

Other types of face plates are discussed below. 

2.7 Metal Fiber Face Tube Image Converter (40) 

The conventional Sokolov tube described above utilizes a piezo- 

electric plate (PZT-4 or quartz) to convert the incident acoustic signal 

into an electric signal, and also to serve as the interface between the 

vacuum chamber and the water. The plate should be as thin as possible, 

and for maximum resolution, the acoustic velocity in the plate should 

be about the same as that of the water so that the maximum angle of 

incidence for acoustic plane waves will be as close to 90” as possible. 

This puts severe limitation on the diameter of the face plate and the 

angular field of view. To overcome these limitations, a metal fiber 

face plate is used to serve as the interface between the vacuum chamber 

(piezoelectric plate) ‘and the water. This metal fiber face plate is 
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made of glass clad wires (about 0.05 mm in diameter on about 0.15 mm 

centers). Theoretically there is no limit on the size of such a plate 

and in practice, 150 mm diameter plates were made. The limit is par- 

tially imposed by the angular deflection of the electronic scanner. 

Published results indicate that such image converters increase 

the field of view of the Sokolov tube, does not degrade the resolution, 

and makes it possible to have a mechanically strong vacuum boundary while 

still being free to select an acoustic to electric transducer that will 

provide optimum image quality. 

Instead of the metal fiber plate discussed above, one may be able 

to improve the characteristic acoustic impedence coupling between the 

water and the piezoelectric (quartz) plate by using fine copper powder 

in a casting plastic. The thickness of this material deposited on the 

quartz plate must be an odd number of quarter wavelength resonant point. 

Such a face plate has 101~ absorption of the incident energy; however, it 

produces loss of resolution (38) , due to the increase in thickness of the 

face plate. 

2.8 Pyroelectric Image Converter and Image Storage (41) ---__ 

The scanning beam interaction with the piezoelectric face of the- 

Sokolov tube is such that only the energy in the piezoelectric element 

during the time interval the scanning beam is touching that element is 

effective in forming the visual signal. This characteristic operation 

has precluded for all practical purposes the use of pulsed acoustic 

radiation in systems using Sokolov tube. 

To overcome this difficulty and further improvement (such as 

eliminating the high frequency cut-off limit, increasing the bandwidth, 
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increasing the sensitivity with the applied frequency, etc.) the piezo- 

electric face plate was replaced by an acoustic sensitive pyroelectric 

target which provides image storage in the form of a spatial temperature 

differential related to the absorbed acoustic energy. Only recently 

have such highly sensitive pyroelectric materials become available. (42) 

Thus pulsed acoustic radiation can be used and the image can be stored 

in the form of a thermal distribution in the pyroelectric layer. The 

pyroelectric material used is a crystalline substance, triglycine 

sulphat e . It is spread as a layer of pyroelectric polymer (PVF2) on 

Pyrex glass. Such a detector is thermovoltaic, and has a spontaneous 

polarization and dielectric constant which change with temperature. 

Its resistivity is high enough to permit charge storage. Pyroelectricity 

exists in polymers, and all pyroelectric materials exhibit piezo- 

electricity but not vice versa. 

The measured sensitivity of such an image converter was reported 

as 10 -3 W/ cm2. Its sensitivity increases with the frequency (proportion 

to f2), while piezoelectric transducers are less sensitive at higher 

frequency. There is no resonance effect and hence it has a wide fre- 

quency band (just like all thermal detectors (thermocouples, thermistors, 

etc.), but which have never been used because of their extremely low 

sensitivity). 

2.9 Electrostatic Transducer (43944) 

This is a foil-electret transducer array for real-time acoustical 

imaging. The foil-electret microphone principle is employed to con- 

struct a two-dimensional transducer array. In one design, the back 

plate is divided into NxN elements, and one electret foil. The second 

design utilizes a back plate and an electret foil each with N strips of 
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mctallization arranged in an overlapping fashion. Parallel sampling 

is done with the first design only. A 256 x 256 element array has 

been constructed, (43) having an area of (256 x 256)mm2, operating at 

frequencies 0.5 to 2.5 blllz. The elements here commuted at a frequency 

of 4 KHz so that 16 frames per second was delivered and real-time view- 

ing was-obtained. Acoustic holograms were obtained in less than 50 sets. 

at a frequency of 3.5 MHz, having a dynamic range of 35 dB. 

Such electrostatic transducer arrays are used either in air or in 

water. The optimum frequency range in air is 70 to 250 KHz and in 

water, 0.3 to 3.5 MHz depending on the medium attenuation of the 

angular field of view. The sensitivity of this system was calculated 

to reach 10 -8 W/cm2 in air and 2x10 -11 K/cm2 in water,.but measured 

sensitivity was reported as 10 -3 W/cm2 only. Eighteen cm demountable 

sealed image converters of the Sokolov type were built with such a foil- 

electret transducer array as face plates. (44) 

2,lO Piezoelectric Array With Electronic Focussing and Scanning (45-50) 
~__. ~- 

The use of a piezoelectric face plate in an acoustic imaging 

converter (Sokolov type) was discussed in the preceding section 1.6. 

Such large piezoelectric plate has a very limited angular field of 

view. This field of view increases with the decrease of the material 

size and reaches a very large angle when it is of the order of a mm or 

less. Thus an array or a mosaic of piezoelectric material will possess 

a large angular field of view together with high sensitivity (10 -11 W/cm2).* 

* Of the many available piezoelectric materials (quartz, lithium 
sulfate, barium titanate, lead zirconate-titanate, lead metaniobate, etc.) 
lead metaniobate is highly recommended because it has a very wide band- 
width without resorting to elaborate backing and matching, and it has 
minimum electrostatic coupling as compared to other materials. 
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A phased piczoclcctric array in one or two dimensions has been 

designed for use in NDT B- or C-scan reflection mode or C-scan trans- 

mission mode. When such an array is electronically focussed and scanned 

in one direction only, the scanning in the other direction is done 

mechanically. Also, the same piezoelectric elements are used to both 

transmit (insonify) the.object and receive (detect) the acoustic signal. 

Such a scheme has the advantage of having smaller aperture for the same 

definition (resolution), or better definition for the same aperture. 

Its image does not suffer from the speckle noise (because of the chirp 

property of the scanning scheme), nor from interference fringes at the 

image boundaries. The focal length of the array can be easily changed 

to any depth in the tested material. It has a faster rate of scanning 

(about 30 frames per second) in real-time operation. It also has a 

range gating with definition comparable to its transverse definition. 

A schematic diagram of acoustic imaging system in one dimension 

is shown in Figure 7. It shows the piezoelectric transducers (PZT-5, 

1.2 nun wide) receiving the acoustic image, and the BGO (Bismuth Germanium 

Oxide substrate) acoustic wave surface delay line, which provide the 

delay necessary in sampling the transducers array. For detailed dis- 

cussion of the theory references (49), (46) and (45) are recommended. 

Arrays of 100 elements, measuring 11.75 cm, were built with acoustic 

BGO delay line having a corresponding 100 taps (one tap per transducer) 

with 50 MHz chirp frequency. This was used for acoustic imaging; using 

1.6 to 2.5 MHz produced images with resolution about 1 mm. Objects 

used were 2-25 cm Al block with holes of various sizes; others were 

bonded Boron fiber reinforced epoxy laminate laid. dorm on titanium. A 
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Figure 7. Schematic diagram of the essential elements of 
one dimensional acoustic imaging system, utilizing 
an array of piezoelectric transducers, electronically 
focused and ASW scanning. Such an array records an 
acoustic image much the same as photographic film in 
recording an optical image. A series of equally spaced 
taps is placed along the delay line and fed with the 
scanning frequency w . Each tap corresponds to an 
individual transduceh which receives the acoustic wave 
(frequency w 1. Signals are mixed by simple diodes, 
and the outpzt signal is the sum and difference 
of the two frequencies. The electrical imaging output 
of the device is received at one of these two frequencies. 
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third sample was. cracked plastic with part of the crack filled with 1120. 

This technique seems to be one of the best and most sensitive 

techniques for nondestructive testing in real-time operation. It is 

similar to the ultrasonic probe used in the medical field, where 5x5 

mosaic elements of lead metaniobate, measuring (4x4) mm* is designed for 

heart diagnosis. It operates at 3.5 MHz with 1 MHz bandwidth, and uses 

integrated circuits. (1081 Arrays of 32x32 with element spacing of 1 mm 

are in the developing stage. There is no reason why such probes cannot 

be used in nondestructive probing of materials for the detection of 

voids, flaws, cracks, bonding, etc. 

2.11 Frequency Sliept Holographic Imaging (511 

In the previous section, a two dimensional array is used to 

angularly scan a probing narrow beam in object space and the received 

backscatter is used to generate a display of the relative positions and 

strengths of the various scatterers present. It is an excellent but 

expensive technique. Another cheaper method of mapping the scattered 

field utilizes only one transmitter and one receiver. The illuminating 

acoustic frequency is changed, causing the diffraction pattern (or 

hologram) of the object to expand or contract and swing in space with 

the object forming the center of gyration for the swinging and changing 

pattern. A single stationary receiver can be used to map the variation 

in the diffracted pattern as the pattern sweeps over it as a result of 

frequency sweeping the object illumination. Theoretical analysis of 

this frequency swept scanning technique shows that under certain con- 

ditions, the collected data is equivalent to that obtained from a linear 

scan of a receiver over the stationary diffraction pattern. 
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Lateral resolution is mainly determined by the width of the 

frequency sweep employed and the angle between the transmitter and the 

receiver observed from the object position. For example, it has been 

estimated that a resolution of 2 mm is expected -for an acoustic system 

having (1-5) MH.z frequency sweep with a transmitter-receiver angular 

separation of 60". The range resolution is determined, in the case of 

chirped frequency sweep illumination, by the chirp rate and bandwidth 

of the post mixer. Range is changed by simply changing the chirp rate. 

No experimental results have been reported yet. 

2.12 Zone-Plate Acoustic Imaging Devices (52-56,17) 

Both amplitude and phase zone-plates with PZT-4 and PZT-5 trans- 

ducers were used to produce acoustic images in real-time. The experi- 

mental arrangement is shown in Figure 8 which is self-explanatory. They 

have been used with 10 MHz acoustic illumination, producing image 

resolution of 0.27 mm (about 1.8 hs). 

The amplitude zone-plate transducer, shown in Figure 9(a) is 

made of a gold zone-plate deposited on one face of a piezoelectric 

transducer. -The other face of the transducer is coated with a uniform 

gold electrode. A voltage applied across the transducer activates the 

areas under the zones only and hence produces a focussed acoustic beam. 

With mechanical movement of the object, the transducer (focussed onto 

the object) can map the object point by point. 

The phase zone-plate transducer is made by first applying a D.C. 

poling voltage across the amplitude zone plate in such a way as to 

reverse the original poling (of the transducer) between the zones, as 

explained in Figure 9(b). The gold zone-plate is then removed from the 

27 



I 1 

PHASE PLATE . 

OBJECT J 
WATER 

Figure 8. Operating arrangement for Zone-plate 
acoustic imaging devices. 
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Figure 9. Fabrication of zone-plate transducers. 
The amplitude zone-plate transducer (a) is formed 
by depositing gold zone-plate pattern over the 
transducer. The phase zone-plate transducer is 
formed by first determining the PZT polarization and 
then applying a DC poling voltage (as shown in (b)) 
to reverse the polarization in zones between the 
zone-plate electrode and its counterpart.Finally, 
the gold zone-plate is replaced by a simple disk 
electrode (as shown in (c)) over the phase zone- 
plate pattern. 
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face of the transducer and is replaced by a uniform electrode to form 

_ the finished phase zone-plate. The focus of such a plate depends on the 

frequency which gives it an added flexibility of axial scanning. 

Such zone plate transducers can be used as both transmitters and 

receivers. Wade and his co-workers (54955) used a different scheme, 

utilizing the optical projection of a Gabor type zone-plate pattern on a 

composite transducer. The transducer is a sandwich structure (shown in 

Figure 10) containing a piezoelectric layer which is differentially 

activated via a photoconductive switching. Such an optical-acoustical 

transducer is addressed by light carrying an acoustic zone-plate pattern 

which is projected on the photoconductive layer. In absence of light, 

most of the voltage drop is across the photoconductor; with the light 

on, the resistance drops and therefore the voltage is applied across the 

piezoelectric transducer, producing a replica of a zone plate pattern 

of an acoustic source. 

A variation of this scheme [shown in Figure 10(b)] uses a dielectric 

on the top of the photoconductive layer. This results in an opposite 

operation; i.e., when the voltage is on and the light is off, strong 

acoustic radiation is emitted, and with the light on, we get a negative 

pattern of the zone-plate. 

Devices based on this principle are in the laboratory stage; they 

are designed to operate near 3 MHz. The transducer focal length is 

10 cm and its diameter is 12 cm. 

2.13 Gabor’s Sonaradiographic Imaging Scheme (57) 

Focussed holograms have the advantage of the amplifying effect of 

the reference beam, but they have the disadvantage, which always arises 
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Figure 10. Zone-plate transducers utilizing projected 
light zone-plate of Gabor type. (a) is the 
positive type operational configuration;it 
consists of a transparent electrode on top 
of a photoconductor (CDS) which is in contact 
with the piezoelectric transdicer (LiNO 3 or RaTi.03). 
03) is the negative type operational configuration; 

when the electric voltage is on, then in the dark 
strong acoustic radiation is emitted; this 
radiation is stopped when the light is switched 
on, thus, giving a negative Zone-plate pattern. 
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in the case of coherent sound, of very strong speckle noise. 

To eliminate this speckle noise, acoustic imaging should use one 

of the following techniques : 

(4 

(b) 

cc> 

Incoherent acoustic waves. 

Cut out all the sections other than just the one from 

which the signal is detected. This can be accomplished by 

the electronic focussing and scanning (section 1.10) or 

zone-plate devices (section 1.12) . 

Sonaradiography (as outlined below) where only one section 

in the depth of the object is isolated and imaged. 

The scheme proposed by Gabor is based on producing holograms with very 

short single acoustic pulses. When such a pulse is scattered by a point 

object, the scattered wave will produce on an intervening membrane a 

rapidly spreading ring-shaped fine ridge. If then we illuminate the 

membrane with a high frequency stroboscopic laser light source for a 

short interval, the trace of the spreading ring will appear exactly 

like the hologram of a point object (a system of Fresnel zones), which 

can then be.photographed and reconstructed. By proper gating we can 

then make holograms of any section within the object. Since the acoustic 

pulse used for illumination is very sharp, no speckles wi 11 appear in 

the hologram. 

This scheme was intended for use in medicine, but there is no 

reason why it cannot be used for industrial NDT. Unfortunately, the 

work on this idea was terminated without satisfactory conclusion. 
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2.14 Acoustic Tomography 

Tomography (well known among x-ray radiographers) is the technique 

by means of which a sharp image of one section of the object is obtained 

by moving the illuminating source and the recording plane in opposite 

direction. The section to be imaged depends on the relative positions 

of the source, the object and the recorder. This technique is well 

known among medical diagnosticians, but we believe that it can be 

extended to material NDT. However, careful study of such a possibility 

has not been done during the course of this contract. 

2.15 Piezoresistive Image Converter (59,601 

One difficulty with the piezoelectric face tube (Sokolov type, 

section 1.6) is the lack of extended grey scale in the image. It is 

difficult, with these tubes, to present more than S-10 distinct shades 

of grey. To overcome this difficulty, piezoresistive materials [like 

CdS (Cu)] may be used. Such materials have a wide range of acoustic 

frequencies as opposed to the resonant frequency and odd harmonic 

response of the piezoelectrics. They also have high resistivity and 

have the capability of information storage, since the piezoelectric 

transducer presents to the scanning 'electron beam a signal proportional 

to the acoustic intensity incident at the moment of scan, while the 

storage system (using piezoresistive transducer) presents all the 

accumulated signals since the last scan. This can then lead, in theory, 

to significant improvement in sensitivity, in addition to the freedom 

to use pulsed acoustic illumination. Sensitivity of the order of 10 -7 

W/cm2 has been reported. 
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2.16 * Electroluminescent Acoustic-Image Detector (61) 

Such a detector combines a .piezoelectric and electroluminescent 

layers in contact, as shown in Figure 11. The thickness of the electro- 

luminescent layer, together with proper simulation for luminescence 

such as bias voltage or UV illumination, are important in yielding a 

phosphor which could be stimulated by the piezoelectric voltage generated. 

Threshold sensitivity in the order of 10m6 to 10 -7 W/cm2 has been re- 

ported. However, activities in this field are practically at a stand- 

still. 

2.17 Photographic and Chemical Direct Acoustic Recording (61,621 

Although none of the direct recordings of acoustic images by 

photographic or chemical recording are presently in use (mainly because 

of their relative low sensitivity, which is of the order of 1 W/cm”) 

they are briefly surveyed in this section since they were part of our 

s tudy . Hereunder is a summary of our findings based mainly on ref. (62). 

Ultrasound can be detected by means of the direct action of ultra- 

sound energy on a photographic emulsion and because ultrasound accelerates 

or causes some chemical reactions. The fact that ultrasonic radiation 

influences a photographic emulsion was reported in 1933 by Marinesco 

and Trui 1 let (64) . Subsequent studies by other investigators still have 

not clearly revealed the exact mechanism involved. The analysis by 

Bennett (65), in which he showed that luminescence and pressure effects 

did not appear to explain all the existing facts, remains a good dis- 

cussion of this situation. Although Bennett indicated rather conclu- 

sively that the softness of the photographic emulsion was a very 
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Figure 11. Piezoelectric electromuninscent phosphor 
image detector. The voltage generated across a 
thin electroluminscent phosphor layer (EL) by 
the action of acoustic wave impinging on a 
piezoelectric material (PI would stimulate 
light emission which could be observed through 
the transparent electrode (TC) and a glass 
support plate. The(TC) electrode on the phosphor 
is connected to the (C) electrode on the 
piezoelectric material; voltages generated on 
the piezoelectric material appear at the 
l.nterface with the electroluminscent layer. 
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important factor in its response to ultrasound, he stated in his con- 

clusion that "there is not sufficient evidence to delineate clearly the 

mechanism, whether thermal, mechanical or otherwise". Bennett's work 

did indicate that the photographic speed of the film emulsion had little 

effect on the result (his tests included film speeds for tungsten from 

less than 10 to 160). 

The softness of the emulsion has been shown to be a significant 

factor for the film detection of ultrasound. Film exposed in the dark 

to ultrasound and developed in the normal manner will yield a useful 

image with an exposure time of about 4 hrs for an ultrasonic intensity 

of 1 W/cm2. If the temperature of the film is raised from 20' to 28'C, 

a significant exposure improvement factor can be obtained. If the 

emulsion is soaked in water at room temperature prior to exposure, a 

factor of about four times less exposure can be used (66) . Both these 

improvements were reported to be based on the fact that the emulsion 

was softened. 

These photographic film methods of course require darkroom tech- 

niques. There are other photographic methods which do not. One involves 

the ultrasound exposure of film in an iodine solution (661 . The effect 

of the ultrasound exposure on the emulsion is to render the emulsion 

resistant to fixing to an extent proportional to the exposure. The 

image becomes visible during the exposure because the emulsion turns a 

darker yellow color. 

The image can be made visible more easily after completion of the 

exposure by fixing the film for a short time (for example, 1 min in Kodak 

liquid X-ray fixer and replenisher) in order to clear the unirradiated 
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emulsion. The remaining emulsion then displays the sound pattern hy a 

yellow color against the clear background. Those areas of greatest 

exposure remain essentially yellow, while in areas of intermediate 

exposure the emulsion is partially cleared. There is therefore some 

grey scale in the image. This detection method can be used in the light 

since the exposed film is not developed and light appears to have little 

influence on the fixing of the emulsion. 

A second photographic method which can be performed in the light 

involves the ultrasound exposure of photographic film or paper in a 

(67,68) developer solution . The uniformly light-exposed emulsion develops 

more quickly in areas where the ultrasonic intensity, and therefore 

agitation of the developer, is highest. 

A thorough study of this technique with photographic paper has 

been made and reported by Arkhangel'skii and Afanas'ev (68) . They found 

that one could obtain a maximum paper density contrast in the exposed 

areas for a developer concentration of 0.2, an exposure time of 90-110 

set, and an ultrasonic intensity of 0.15-0.25 W/cm" for photographic 

paper No. 6. The threshold sensitivity was reported to be 0.05 W/cmL 

for a high developer concentration and an exposure time of 40 sec. 

Exposure times could not be too long or the paper would develop completely. 

A practical aspect of the developer and photographic paper study 

by Arkhangel'skii and Afanas'ev is that they devised a thin detector cell 

containing developer solution and paper. The cell had ultrasound trans- 

mitting windows of thin (0.15 mm) rubber and allowed a space of 2 mm 

inside *he cell for the paper and developer solution. In this manner 

the need for a large tank containing developer solution as the exposure 
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tank was eliminated. 

The same authors also studied the resolution characteristics of 

the photographic paper method. The resolution is determined by the 

transverse diffusion of the developing solution in the photolayer and 

by the presence of nonuniform streaming. This latter effect leads to 

distorted and by the presence of nonuniform streaming. This latter 

effect leads to distorted images because fresh developer is directed 

along the ultrasonic field by the acoustic wind. The rubber-covered 

detector cell tended to eliminate.some of this problem. Assuming that 

the streaming problem could be eliminated, the authors indicated that 

the resolution of the detector could be in the range of 0.01 mm. 

One chemical detection method that has been studied by a number 

of investigators involves potassium iodide-starch solutions (69,70,71-73) . 

Under ultrasonic irradiation air-filled water undergoes an oxidizing 

reaction to form H202, which tends to discolor organic dyes. For example, 

the potassium iodide-starch solution tends to turn blue. Rust et al. (71) 

used this phenomenon to detect ultrasound images by making an array of 

boxes containing this solution. Each liquid-filled box tended to darken 

depending upon the ultrasonic intensity. Darkening also depended upon 

the iodine concentration and the exposure time. 

The individual liquid-filled boxes had to be at least one wave- 

length in depth for optimum results. The threshold ultrasonic intensity 

was reported to be 0.5-1.0 W/cm2. At that intensity exposure times were 

only about 2 min. The threshold intensity could be lowered to a value 

as low as 0.07 W/cm2 if small amounts of aliphatic chlorides such as 

Ccl4 or chloroform were added to the solution (70) . 
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A similar method suggestpd by Bennett (69) called for the exposure 

of films of starch on glass plates in an iodine solution. Ilere too a 

blue color was produced in areas of higher ultrasound intensity. Expo- 

sure times of about 2 min at 1 W/cm 2 - were common. 

A number of other chemical techniques involving more complicated 

organic dyes have also been investigated (74,75) . Recently, a new photo- 

polymer material for optical hologram recording was announced (76,771 . 

It is grainless, exhibits 100% diffraction efficiency, irreversible, 

can be overmodulated, no wet processing is needed, and permits the dif- 

fraction efficiency to be preadjusted for a variety of desired angular 

responses and spatial frequencies. It is, however, not very sensitive 

(slower than 649F emulsion) and displays poor low spatial frequency 

response. The material is photopolymerizable, sensitized in the blue- 

green spectral region with a dye sensitizer; thus it can be exposed 

for all the argon-ion laser wavelengths. It can be coated on glass or 

film base with thickness from a few micrometers to several hundred 

micrometers. A typical hologram was recorded on this material with 3:l 

reference to object beam ratio, in 30 seconds using 12.8 mW/cm'. 

The material is still under development and is being.tested in 

various optical laboratories. 

However, nothing is known about the response of this material to 

acoustic radiation or electron beams. Thus its use for acoustic record- 

ing seems at the present to be limited to systems where the acoustic 

image is converted to an optical image (first as, for example, in Gabor's 

scheme, or with piezoelectric-electroluminescent devices, etc.). Ilowever, 

with its present low speed characteristic, it is doubtful that it has use 
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in acoustic image recording, except in special cases. 

2.18 Solid and Liquid Crystal Acoustic Displays (78-82) 

Crystalline solid, thin layer of CoC12 .6H20 was used to demonstrate 

its capability to visualize acoustic images. The concept is based on 

the well known fact that acoustic waves projected on a suitable absorb- 

ing material is converted into a corresponding thermal map of the acoustic 

image. Since the color of cobalt chloride crystal layer depends on its 

crystal structure, and this is a function of its local temperature, dif- 

ferent ultrasonic intensities show up in various colors, starting from 

pink, then blue, and ending in white. The interest in such solid crys- 

tals as acoustic field detectors has been only an academic curiosity. 

On the other hand the interest in liquid crystals is more than 

academic. It is practical and progressive development of these crystals 

and their potential use as real-time acoustic image display devices is 

carried out in various laboratories. The optical properties of these 

crystals resemble those of crystalline solid. 

Liquid crystals are usually divided into smectic, nematic and 

cholesteric, depending on the arrangement of the molecules and their 

degree of rotational freedom. Only the nematic and cholesteric types 

were used as acoustic to optic converters Several cholestric materials 

were tried as acoustic area detectors. These attempts were based on 

thermal mapping of spatial temperature variation on an ultrasonic 

absorber irradiated by the acoustic field (79) . Most of the problems 

with cholesteric liquid displays is that they have limited resolution 

(which is a function of the thickness of the substrate) and poor sensi- 

tivity. Microencapsulation in coating materials of high acoustic 
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propcrtics and using an acoustic impedcncc close to that of the capsula- 

ted cholestric liquid crystals has been suggested to improvo the resolu- 

tion. Ultrasonic holograms were recorded with cholesteric liquid crystal 

area detectors, by properly thermal balancing of the liquid crystals, 

and by using a transparent acoustic absorber in specially constructed 

black bottom tank(84). In spite of such demonstration of the use of 

cholestric liquid crystals in acoustic holography, such method is more 

of a scientific than a practical importance, since the acoustic intensity 

used was 8.1 W/cm2 at a frequency of 5 MHz. Improvement of the sensi- 

tivity (may be by an order of magnitude) would, however, mean the need 

for an ambient temperature regulation to lo-' degrees which rules the 

scheme out for any practical use. 

Better schemes for using liquid crystals exploit the five electro- 

optical effects which have been observed in certain types of nematic 

liquid crystals, all of which may perhaps be influenced by an ultra- 

sonic field. Based on these electro-optical effects, the following 

suggestions were made to design liquid crystal displays. 

2.18.1 Dynamic Scattering 

When an electric field is applied, the liquid crystals become 

milky white and opaque. This dynamic scattering is due to the 

interaction of charge carriers and the dipole moment of the 

nematic liquid crystal molecules. Since ultrasonic fields 

influence the electric conduction, the dynamic light scattering 

may be affected and the changes taking place could be used for 

(78) acoustical imaging displays . 
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2.18.2 VoItagc Controlled Optical Activity 

A thin layer of twisted nematic liquid crystals is sandwiched 

between two glass plates, each provided with conductive coating. 

The molecules of the liquid crystals are turned 90“ in going 

from one glass plate to the other with no electric field ap- 

plied. When linearly polarized li-ght is incident perpendicular 

to one side, its plane of polarization will rotate along the 

twist axis of the nematic molecule a total of 90” as the light 

is transmitted to the other side. On the other hand, when an 

electric field is applied across the cell, the liquid crystal 

molecules are rearranged so that their orientation no longer 

shows a continuous twist of 90’ and so light will pass through 

the cell. Knowing that static electric fields and acoustic 

fields may interact, such interaction could be used to develop 

an acoustical-to-optical display. 

2.18.3 Guest-host Interaction 

A dichroic dye molecule is introduced as a “guest” into the 

crystalline “host” nematic liquid crystal. The orientation 

of the dye molecules and their optical absorption are controlled 

by applying an aligning electric field. Since the optical 

absorption properties of certain dyes are influenced by acoustic 

radiation, a real-time acoustical-to-optical display screen may 

be reconstructed. 
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2.18.4 Bircfringent Properties 

Phase deformation in vertically aligned liquid crystal 

(specially prepared) shows up in their light transmission 

properties, .as was observed by Schickel and Fahrensohn of AEG- 

Telefunken. Contrast ratio of 1OOO:l have been achieved using 

only 7-10 volts. The orientation of the liquid crystals can be 

influenced by an acoustic wavefront and hence the latter may be 

visualized. 

It is to be emphasized that none of the above suggested schemes have 

been tested. 

Other tested schemes are presented below. 

2.18.5 Direct Acousto-Optical Effects (78) 

Propagation of acoustic waves in nematic liquid crystals 

-causes turbulent motion of these crystals, and this leads to 

dynamic optical scattering in the liquid crystal layers (in the 

absence of any electric field). This was demonstrated (78) by 

bonding an array of 10 MHz PZT-4 acoustic transducer to the 

back of a liquid crystal cell. When the transducers were 

switched on, the liquid cells in contact with them turned milky. 

It was found that the sensitivity of such a cell can be in- 

creased by proper biasing with an electric field (85) . Appendix A, 

pp. A-13 describes a successful design of such an acousto/optic 

liquid crystal display screen (80) . 
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Although image quality of liquid crystal devices are quite poor, 

the existing interest in such devices is motivating many researchers 

to pursue their work with optimism. 

New results will be reported at the Acoustical Holography 

Symposium #7 at Chicago, Illinois (August 1976) by J. L. Dion, of 

Canada, on the use of homeotropic nematic liquid crystal cells having 

sensitivity better than 10 -6 W/cm* independent of the frequency in the 

range of 1 to 10 MHz. 

2.19 Pohlman Cell (86,87) 

This cell is described in Appendix A, pp-13. Poh lman announced 

the idea in 1939(86) and then demonstrated its use in 1948 (87) . To 

improve the contrast of acoustic images detected by these cells, 

Van Valkenburg (88) applied a small bias voltage (typically 25-30 V AC) 

across the cell. The voltage tends to align the flakes so that no light 

is reflected in the absence of ultrasound. Results were shown (881 using 

5 MHz. Such cells, however, gave way to other techniques of acoustic 

imaging, because of its poor relative resolution and sensitivity (10 -1 

to 10 -3 W/cm* with reaction time L 1 sec., and 2.8x10 -7 W/cm* with ex- 

pected reaction time of the order of minutes). It also has a limited 

dynamic range of 20 dB. 

2.20 Oil, Thermoplastic and Photoplastic Films (88,89,90,110) 

All these detectors are used after converting the acoustic image 

into an electronic one and focussing the electrons on one of these 

materials. 
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A thin oil .film is used to coat an optically flat glass plate in 

vacuum. The electrons, writing on the oil film, are attracted by a 

high voltage on the glass plate, causing the oil surface to deform, 

which in turn results in varying the thickness of the oil film. The 

deformed film is then read out optically by using a phase modulation 

scheme, and an optical image is projected. 

Thermoplastic film is very similar to the oil film. A thin layer 

of low-melting-poi'nt elastic is coated on a transparent conducting film. 

The film is written on by an electron beam and heated to the softening 

point of the plastic coating. The electrons are attracted by a high 

voltage on the conducting backing and produce thickness variation in, a 

manner similar to that of the oil film. After cooling, the plastic 

hardens, and thus a permanent record is available. 

Photoplastic is very similar to thermoplastic, except that it is 

also a photoconductor. The surface of the photoconductor is charged, 

and, at points where light strikes the photoconductor, the charge leaks 

through to the conducting layer on the base. The remaining charge 

causes deformation when the photoplastic is softened by heating in the 

same way as with thermoplastic. This material is better than the 

thermoplastic because it does not require vacuum; however, it is less 

sensitive. 

All of these materials require complex and expensive material in 

addition to their low sensitivities 0.1 - 1 W/cm* and hence they cannot 

compete with other detectors. * 

* 
For recent advances, see Ref. B. 
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2.21 Scanning snd Sampling Technique (91-!)5) 
- 

flistorically the first acoustic holograms were recorded (either 

in air or water) by scanning a small microphone (in air) or piezoelectric 

detector (in water) over the hologram plane. The signal then modulates 

the intensity of a CRT electron gun, or a small neon bulb focussed on a 

photographic plate. The CRT electron beam or the neon bulb move in 

synchronism with the ac0usti.c detector at a slow speed to produce an 

optical hologram properly demagnified. There have been a variety of 

arrangements of this technique, one of which gives a sampled hologram 

which can be constructed by a computer (96) , another by keeping the de- 

tector stationary and scanning with the insonifying sollrce (what is 

known as reciprocal hologram (104,104)) 
> a third by scanning both the 

source and the detector simultaneously with the same or different rela- 

tive speed to produce a synthetic aperture hologram (105,106) , a fourth 

approach produces a phase only hologram (107) , etc. 

The literature is full of such techniques. The scanning is done 

mechanically and thus it is very slow and for this particular reason it 

is rarely used. However, if a mosaic of detectors are made to sample 

the field in parallel, then it can produce a hologram almost instanta- 

neous ly . However, the reconstruction or computer data reduction limit 

the speed of the process to obtain the final visual image. Such s ch emes 

are superceded presently with the more sophisticated techniques described 

in previous sections (e.g., electronically focussed and scanned piezo- 

electric transducers, Bragg cells, rippled surface, etc.). 



2.22 Recent Developments (yet to be published)* 

Takuso Sato used a rotating random phase disk behind the object 

to detect the signal by a fixed receiver placed far from the disk, thus 

transforming the spatial distribution of the wave intensity of the 

object waves to be reconstructed into a temporal distribution. This 

idea eliminates the need for a scanning receiver or phased array 

receivers. 

Hitachi Ltd. of Japan will announce soon a shear wave focussed 

image holography system for sizing vertical and oblique flaws and 

defects in metal structures. The system utilizes acoustical holographic 

interferometry in the focussed image hologram mode. The image of an 

internal flaw consists of interference fringes or contour lines across 

the flaw's surface. The fringe separation represents half wavelength 

deviation in depth from the scanning plane, and the length of the fringe 

corresponds to the width of the flaw. Thus one can estimate the size 

of the flaw by measuring the number and length of the fringes which 

appear on the focussed image hologram. 

In an effort to suppress the effects of object vibrations, changing 

temperature, and other external infouences, H. J. Shaw applies the 

principle of differential phase contrast imaging where comparison is 

made between the phases of adjacent points on the object, which are 

separated by a constant distance along the scan line. This is different 

from the fixed reference phase contrast imaging in that the reference 

and signal beams travel almost identical paths. 

* 
It is expected that some of these accomplishments will be announced 

at the Acoustical llolography Symposium #7 (Aug. 1976). 
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Rcsl-time imaging with shear waves and surface waves, using the 

FM chirp focusscd phase array and tilting the ,array past the critical 

angle for longitudinal waves in the target block, shows a 5 mm defini- 

tion in the normal direction and 4 mm in the horizontal direction at a 

distance of 15 cm in an Al block, when the acoustic frequency was 1.8 MHz. 

When the array is tilted further than the critical angle, exciting 

Rayleigh waves, the resolution achieved did not change. This informa- 

tion was obtained from G. S. Kino. 
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CHAPTER III 

ANALYSIS, CONCLUSIONS AND RECObiMENDATIONS 
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3.1 Image Quality 

Acoustic images produ red by whatever technique are far inferior 

to optical images. They are not as sharp, reveal poor resolution, 

distortion, noisy, and can lead to erroneous interpretation. However, 

they do reveal the internal structure of the object, and not merely its 

outside slrface. In comparison with x-rays, they are again, as a whole, 

of less quality; but again because of the nature of interaction of 

acoustic waves in the materials they give information about the inter- 

faces in the tested objects, which are hidden or not evident in x-ray 

pictures . 

Hereunder are the main causes for limiting the quality of acoustic 

images. 

(a) Wavelength. -. Acoustical frequencies (normally used for non- 

destructive testing (0.1 - 20 MHz) are far below the optical frequencies 

(~10~~ Hz) . Naturally, then, the acoustic resolution is less than 

optical ones. Indeed, imrdes obtained in acoustic microscopy where 

very high frequencies (1 - 10 GHz) were used, compete very well with 

optical microscopy pictures. 

(b) Specular Reflection. Most of the surfaces are smooth relative 

to the acoustic wavelength. This produces specular reflection and.hence 

false interpretations. For example, rods may look like wires, spheres 

as points, etc. Thus, care must be taken in choosing the right acoustic 

frequency to insonify the object, relative to its surface roughness, 

geometrical arrangement, etc. 

(cl Speckle Noise. This is produced by the coherent nature of the 

irradiation. It can be eliminated by using wide frequency band, large 

50 



aperture, very sharp pulsing for insonification, large aperture, 

and/or focussed detection. 

(d) Limited Aperture. In reconstructing an acoustic hologram 

with visible light, the hologram dimension must be reduced by the ratio 

of the acoustical wavelength to optical wavelength (Appendix A, pp. A-4) 

which is of the order of magnitude of 1000; otherwise, depth distortion 

is generated in the reconstructed image. A highly reduced hologram on 

the other hand will be too noisy due to speckles. Other means to avoid 

the demagnification of the acoustic hologram under reconstruction, and 

produce an undistorted image, are (a) the use of composite holography 

(discussed next); (b) ignore the depth information; or (c) resort to 

direct focussed imaging (item 1.10, for example). 

(e) Depth Distortion. One of the main attractions to holography 

is to reconstruct the whole 3-D information about the object from one 

hologram. However, \<hen there is a change between the wavelengths of 

the radiation used in recording and reconstructing the hologram, the 

depth of the object (in the reconstructed image) is magnified or de- 

magnified relative to the other dimensions of the object. To avoid this 

the hologram dimensions have to be changed (as explained above and 

Appendix A, pp. A-4). This, however, may be undesirable. 

Another idea to obtain undistorted.depth information, separate 

images are made for various sections in the body (e.g., using a B-scan). 

Transparencies of these images are then stacked and one optical hologram 

of the whole stack is made optically (97 s 981 . This hologram then may be 

reconstructed later with the same optical wavelength, to produce an 

undistorted visible acoustic image of the object. 
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(f) Miscellaneous Artifac.ts. Interpretation of acoustic images 

is sometimes hampered by artifacts peculiar to the technique used. 

Scanning, for example, whether linear, circular or helical, may produce 

(99 moire patterns , multiplicity of images which are not separated from 

one another, etc. Diffraction fringes may appear to hinder the location 

of sharp edges. Speckle noise may be confused with the roughness of the 

surface. 

3.2 Comparison of Various Techniques. 

The various systems for visualizing acoustical images in NDT are 

described in Chapter 2 and summarized in Table 1. They are also pre- 

sented in a condensed form in Appendix 'A, Table A.1, pp. A-6. The 

choice of a proper system depends on: 

(a) type and size of object to be tested, 

0) accessibility to the object (i.e., tested on site or in the 

laboratory), 

(c) degree of the details of the information, 

(4 need for real-time information, or a record for filing, 

W need for gross macroscopic information only, or gross and 

fine microscopic details, 

(fl whether the system is to work alone or as a complement to 

other systems, 

(gl whether the system has the capability of acoustical imaging 

only or both acoustical and optical imaging, and 

(h) the cost of the system. 
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The Bragg-diffraction system (Section 2.3) exhibits the capability 

for real-time acoustic image visualization, and at the same time with 

some modification, can be switched to real-time optical imaging. It is 

simple and sensitive enough. However, it may be limited to testing of 

medium sized objects which can be moved to the lab and placed in the 

water filled Bragg cell. 

For macroscopic and microscopic testing of medium sized objects, 

an electronically focussed, electronically scanned piezoelectric array 

(Section 2.10) offers the best technique at the present. 

For large objects, a piezoelectric mosaic array may be built as a 

probe to scan the object mechanically (like a stethescope). This is 

similar to the technique used in medical diagnosis. Like the above two 

techniques it has the capability of real-time display. 

Most of the other techniques have not yet proven their practicality, 

are still in the research or development stage, or incapable of real- 

time display. 

With the exception of Sokolov-type image converter system (Section 

2.6) and the deformed water surface (static ripple) system (Section 2.2), 

no other system is available commercially. Both systems, however, have 

limited field of view. 

3.3 Recommendations. 

1. Follow up the international state of the art and new devclop- 

ment in this fast moving acousto/optical imaging technique. 

2. Design an acoustical system, or systems, that can be incor- 

porated in the MSK hybrid system (Figure l), according to the types of 

objects to be tested. 
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3. Analyze and design the whole hybrid system for nondestructive 

testing incorporating optical, acoustical and correlation techniaues. 

This includes information acquisition, storage, reduction and retrieval 

in addition to the various subsystems of imaging, rectification, 

enhancement, etc. 

4. Study and bl1il.d a portable probe for testing large objects 

on site, akin to that used in medical diagnosis (utilizing integrated 

circuits (lo8)). 

5. Initiate a program to study microscopic cracks and monitoring 

them acoustically. 

6. Initiate a study program on zone-plate acoustic imaging 

devices with the possibility of using the zone-plate for both acoustical 

and optical focussing. 

7. Investigate more thoroughly the capabilities of acoustic 

tomography (Section 2.14) and Gabor’s sonoradiography (Section 2.13). 
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TABLE 1 

ACOUSTO/OPTIC IMAGING METHODS AND DETECTION 

Imaging System Detectors or 
Detection 
Technique G 
Display 

Liquid Surface 
(static ripples) 

Bragg-Diffraction Coherent laser 
E (Direct sound-light light (continu- 

interaction) ous or pulsed) 

Deformed Solids 
(dynamic ripples) 

Laser beam scan- 
ning or electron 
beam scanning 

Image Converter 
(Sokolov) 

Optical phase con- 
trast or optical 
scanning with co- 
herent or incohcr- 
ent light 

Scanning the back 
of PZT face (quartz 
or barium) electron- 
ically & detect sec- 
ondary emission. 

Metal Fiber Face 
tube image con- 
verter (with ap- 
propri at e PZT) 

Scanning the back of 
the PZT electronic- 
ally (like Sokolov 
tube) 

Real - Sensitivity Frequency Section General Remarks 
Time 1 Range Reference 

Capability W/cm‘ 
MHZ 

Yes 1. 5x10m3 (normal) 0.5-10 2.2 

lo-5 (reported) 
10 -‘I (theoretical) 

Yes 1o-g (theoretical) 10-100 

Yes 1O-3 (reported) 100 
10 -9 to lo-l1 

(theoretical) 

2.3 

2.4,2.5 

Yes 1o-g (theoretical) Up to 0 or 2.6 Sealed tube 
20 -very narrow angular 

aperture (10-20’) 
-3X -5X resolution 

(r$por?ed) 
-new designs may in- 

crease aperture and 
frequency. 

Yes lo-’ (th eoretical) Up to 20 2.7 Improves the angular 
field of view’ of 
Sokolov tube. 



TABLE 1 (Cont ‘d) 

Imaging System Detectors or 
Detection 
Technique & 
Display 

Real - 
Time 

Capability 

Pyroelectric face Pyroelectrics 
tube image con- scanned with elec- 
vert er tron beam 

Electrostatic 
Transducers 

u-l 0 

Electric 
switching 

Piezoelectric array Electronic 
\<ith electronic 
focussing & scanning 

Piezoresistive 
Image Converter 

Electron beam 
scanning 

Electroluminescent Direct conversion 
image converter 

Yes 

Photographic and 
Chemical Methods 

Direct interaction No 

Photopolymer mat- After conversion 
erials to visible or 

electron images 

No 

Yes 

Yes 

Yes 

Yes 

Sensitivity 
W/cm2 

Frequency 
Range 

MHZ 

Section General Remarks 
Reference 

lo-3 at 3 MHz 
(reported) 

up to 20 2.8 -Sensitivity increases 
with f2 

-wide .frequency band 
(>20 MHz) 

-sealed tube 
ii-11 -8 in air ) 0.07 to 0.250 2.9 

in water) in air 
(theoretical) 0.3 to 3.5 in 

water 
1o-5 (reported) 

lo-l1 (theoretical) l-20 (used) 
1o-8 (reported) 

2.10 

10 -7 (reported) 1 to 20 (used) 2.15 

1o-6 (reported) 2.16 

~~1-5 (reported > 0.02 2.17 

0.013 (reported) 
(with Argon Ion 
laser) 

2.17 

Laser beam scanning of 
PZT for readout has 
sensitivity of 10-4 
W/ cm2 

Has larger dynamic 
range than piezoelec- 
‘tries. 
Has storage capabi li ty . 



TABLE 1 (Cont ‘d) 

Imaging System 

Oi 1, Thermoplastic 
and photoplastic 
recorders 

Pholman Cell 

Solid and Liquid Direct 
Crystal Display Interaction 

Chemical Techniques 
Phosphor persis- 
tence changes. 

Direct Interaction 
plus proper view- 
ing system 

Extinction of 
luminescence 

Detectors or 
Detection 
Technique E 
Display 

Real - Sensitivity 
Time 

Capability W/cm2 

Electron beam 
scanners plus 
optical illumina- 
tion 

Direct 
Interaction 

No 0. l-l (reported) 

Yes 10-l to 10 -3 
(reaction time 

1 sec.) 
2.8~10-~ (reaction 
time ~60 sets.) 

Yes o.1-10-6 
(reported) 

Yes 0.05-0.1 

Frequency Sectiqn General Remarks 
Range Reference 

MHZ 

2.20 

2.19 

Poor resolution, poor 
contrast, and limited 
dynamic range of 20 dB . 

2.18 Sti 11 in experimental 
stage. 

See Ref. 102 which in- 
cludes specific 
references; e.g., Ca-CrS 
stimulated by UV increa- 
ses its luminescence 
persistence by acoustic 
exposure. Spatial 
resolution of 0.2 mm 
reported. 



TABLE 1 (Cont’d) 

Imaging System Detectors or 
Detection 
Technique $ 
Display 

Chemical Techniques 
(Cont ‘d) 

Thermosensitive 
color changes 

Real- 
Time 

Capabi li ty 

Sensitivity 
W/cm* 

Frequency Section 
Range Reference 

MHZ 

1 

Change in Photo- 
tn emission 
Oc Change in electrical 

conductivity 
Thermocouple and 

thermistor 

0.1 (at 5 MHz) 

0.1 

0.1 

Zone Plate Acoustic Electron or Optical Yes 10 -11 
Focussing (on PZT) Scanning 

Gabor’s Sonoradio- Coherent laser beam No 
graphs E photo recording 

Acoustic Tomography PZT 

Frequency Swept PZT 
Recording 

No lo-l1 (theoretical) 

Possible 10 -” (theoretical) 

2.12 

2.13 

2.14 Mostly used in medicine. 

2.11 No results reported. 

General Remarks 

Chromotropic compound 
(e.g., HgsAgeiodide) ; 
changes color from yel- 
low to red instantly 
with acoustic absorption 
(1 sec. exposure) ; ir- 
reversible process. 

Semiconductor materials 
such as zinc E cadmium. 
Thermopile detects 0.1 
W/cm*, ‘temp. rise of 
(10-4) Oc. 

No results reported. 



TABLE 1 (Cqnt ‘d) 

Imaging System Detectors or 
Detection 
Technique & 
Display 

Real- 
Time 

Capabi li ty 

Sensitivity 
W/cm* 

Frequency 
Range 

MHZ 

Section General Remarks 
Reference 

and Computer 
Reconstruction 

Digital Sampling PZT (in water) 
Microphone (in air) 

No lo-l1 (theoretical) 2.21 Slow 

Rutican Recording Light image Yes 30 ergs/cm* Appendix B 
Devices 
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I. INTRODUCTION 

1.1 GENERAL REMARKS 

The flurry of activity in acoustical imaging of the 1930's and 

early 1940's, PJ3 mainly in the USSR and Europe; has been revived with 

more vigour in the 1960's after the demonstrated success of optical 

holography and the availability of coherent .light sources--lasers. The 

dormant peri0d.i.n the work on acoustical imaging resulted mainly from 

the difficulties encountered in making satisfactory acoustic lenses on 

one hand, and on the other hand,from the inability to produce reliable 

and/or low cost acousto-optical transducers capable of transforming the 

acoustical image to a visible one. 

Holography seems to alleviate these two main difficulties since, 

in p.rinciple, no lenses were needed and the acoustical hologram may be 

in itself considered as the acousto-optical transducer. 13341 ' Since the 

early publication of the original theory of holography 151 by D. Gabor in 

Great Britain, and the early work of El-Sum [6,71 in the USA, it was known 

that the technique of holography can be extended to all scalar waves, 

including acoustic waves. Demonstration of this was made with elec- 

trons, [6,81 x-raysi7' and microwaves[" in the 1950's; however, acoustic 

holograms were made about two decades later. Cl01 The delay was.mainly 

due to the nonavailability of coherent light sources (lasers) and the 

lack of proper practical techniques. for interfacing acoustical and optical 

fields in order to render an intelligible visible picture of the acous- 

tical image. 

In light of the brief discussion mentioned above, we shall survey 

the various categories of acoustic holography and the interfacing of the 

A-2 



acoustical and optical fields as applied in particular to nondcstructivc 

testing. For a cohcrcnt discussion we shall describe first, very briefly, 

the general theory of holography. 

1.2 SIblPLIFIED TJJEORY OF JJOLOGRAPIlY IN GENERAL 

The theory of holography is very well known C5,6,12,131 . When two 

coherent waves so and fir interferes, the recorded interference pattern 

registers the intensity I of the resulting wave f where 

-t +* + +* -t +* +*+ 
I = z* = UrUr + UoUo + uruo + 'rue (11 

where the asterisk denotes the complex conjugate. 

The first two terms in the above equation (1) represent the 

intensities of the waves 8r and so, respectively, while the last two . 

terms represent additional intensities due to the interference between 

cr and co. The recorded pattern is the hologram. The two waves cr and 

ijO 
may be considered as a reference wave and an object wave (wave 

scattered by the object). Assuming linear recording of the intensity I 

and a linear response of the hologram, it is easy to prove that illumi- 

nating the hologram with one of the waves (for example cr) reconstructs 

the other wave co and its complex conjugate "i. In other words a .replica 

of the original object is reconstructed together with its complex con- 

jugate or a twin image. The two images can be separated and viewed. 

The reconstructing wave need not be of the same wavelength as 

that used to make the hologram. In other words, do and cr may be 

acoustic waves, while the reconstructing wave is a visible light wave. 

Thus we have an acoustical hologram reconstructed with visible light, 
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The dimensions of the rcconstructcd image, however, will be diffcrcnt 

from the original object unless the dimensions of the hologram is 

properly changed before the reconstruction. r31 When the hologram di- 

mensions are unchanged, the lateral dimensions (x,y) of the object are 

unchanged, while the depth (z) is distorted in proportion to the wave- 

length ratio As/AL where Xs is the acoustic wavelength and XL is 

the light wavelength. 

If, on the other hand, the scale of the acoustic hologram is 

reduced by a factor m, the lateral dimensions of the reconstructed image 

will be reduced by the same factor, while the reduction in depth is 

proportional to m2; the net scale transformation x', y' and z' of the 

reconstructed image will then read 

x’ = mx 

y' = my (2) 

z' = m 2 (Q/A,) z 

which shows that to obtain an undistorted image, one must choose 

m = XL/ hS -3 which is of the order of 10 . The image would therefore be 

so small as to require optical magnification--;<hich would in turn 

regenerate the depth distortion. 

The question next is how does the acoustical hologram be recorded 

permanently (such as on photographic films for later reconstruction) or 

temporarily on an appropriate medium (for real time reconstruction). 

Table 1[14] lists the various classes of ultrasonic detectors 
Jc 

(frequency > 2Opz). 

The choice of a particular technique for recording an acoustical 

hologram depends upon the frequency of the interaction of the sound with 
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the subject under study. As a guide for the choice of the appropriate 

sonic frcqucncy for various applications, Table II may bc used as a 

guide. 1151 For nondestructive testing, frequencies in the range of 

100 KHz to 10 MHz arc used for detection of macroscopic flows. The 

techniques of mapping the acoustic field into an optical one vary ac- 

cording to the acoustic frequency used. Furthermore, the coupling 

between the tested object and the medium of acoustic wave propagation 

depends, also, on the acoustic frequency. We shall emphasize in this 

proposal techniques applicable to nondestructive testing of macroscopic, 

nonbiological objects. 
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Table 1. Ultras&k Detectors (Frequency > 20 KIiz) 

Class of Detector 
Mfnfmum Detect 

Power (watt/cm 

Photographic and Chemical 
(direct effect on particularly soft emulsion; change in resistance 
of emulsion to fixing; change in developing speed; oxldlzlng 
reaction. ) 

1 

Thermal 
(thermocouples; thermistors; thermopiles; semiconductors; 
photoemitt2rs; organic materials which change color, 
such as iodine, chlorine, chromotropics; liquid crystals: 
stimulators or extinguishers ‘of luminescence; ‘phospher 

0. 1 

persistance devices) 

Optical and Mechanical 
(Schlieren method; use of birefringence 
surface deformation of sollds or fluids; 
aluminum flakes) 

Electronic 
(piezoelectric effect; eletrostrictive; 

piezoelectric. plus electroluminesc2nce) 

due to stress; 
suspended 

piezoresistive; 

1o-4 

10’11 

Table II. Frequency Range for Different Applications 

‘Applications Frequency Range of Sound 

Geophysics - 100 Hz, for deep penetration 
100 to 10,000 Hz for oil, mineral prospectint 

and archaeology 

Ocea nogra phy 5 to 100 KHz for long to short range 3-D 
imaging under water 

Nondestructive Testing and Medical 
Diagnosis 

100 KHZ to 10 MHz 

Ultrasonic Microscopy 10 MHz to 10 GHz 
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II. PlIi'l'lIODS AND TEQINIQUES OF ACOUSTO-OPTICAL 
IIOI,OCIu\PI1Y AND ACOUSTO-OPTICAL INTERFACING 

Acoustical imaging and acousto-optical interfacing (coupling) are 

interdepcndcnt and will bc dealt with as-such in this section. 

There arc many ways of categorizing the methods and techniques 

of acoustical holography. [3,4,15,16,173 Such methods fall in one or a 

combination of the following classes: 

l Surface deformation (liquid and solid) 

. Scanning (mechanical, electronic and laser beam) 

. Direct light- sound interaction (Bragg diffraction) 

l Direct conversion for instantaneous display (liquid crystals) 

The following are brief discussions of some of these methods, 

presented merely to illustrate the general idea of the techniques. 

2.1 LIQUID SURFACE DEFORMTION WITH ACOUSTIC REFERENCE WAVE. --.-__~ 

When two acoustic beams (object and reference beams) propagate in 

3 liquid medium, their interference affects the free surface of the 

liquid, according to the pressure equilibrium equation: 

ah - yV2h = 2P (3) 

where P, p, y and h are the acoustic pressure, the density of the liquid, 

its surface tension, and the surface deformation, respectively. The 

whole liquid surface is levitated by ho, while the ripples (height h) are 

spaced 3 distant d apart.,/'which, from Eq. (3) will be: 
/' 
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h = 1.c 
25r2 y fi Sin' OS 

d = % 
2 Sin OS (4) 

where I is the sound intensity, C and fs its velocity and frequency, 

es half the angle between the reference and object beam. 

The rippled surface can be considered 3s 3 phase hologram which 

may be reconstructed optically by illuminating it with a coherent light 

beam, incident on the surface at an angle BL such that 

Sin BL Sin es 

AL 
= 

As 
(51 

Unless the general levitation, ho, of the surface is uniform or spherical, 

such levitation produces undesirable noise which should be minimized by 

choosing the proper parameters of the liquid [Eq. (4)]. On the other 

hand, h should be maximized in order to have the highest optical dif- 

fraction efficiency. Branden and Smithr18] recommended that 3s a com- 

promise, 3 good working criterion is 

fs(MHz) Sin es ~0.233 (6) 

Other sources of noise in this technique may also be minimized 

by using an in-focus or image hologram instead of the lensless holography 

by focusing the insonified object onto the liquid surface (using proper 

acoustic lenses). The reference beam is directed to the surface to form 

A-8 



the image hologram. Such technique has advantages :IIKI disndvnntagcs, 

in addition to several limitations which will bc dc'alt with in the course 

of the study. 

2.2 LIQUID SURFACE DEFORMATION WITflOUT ACOUSTIC REFERENCE WAVE ~=-- - 
(Time-Ind_elend= 

Instead of 3 reference beam, Green [I91 used 3 wire grating close 

to the surface.on which the acoustic image of the object, immersed in 

the liquid, is projected. In this way, the undesired high frequency 

ripples,superimposed on the main ripples of the surface and which is 
:;Yi 

UnavoidableinBrenden-Smith arrangement, is reduced considerably. The 

optical intensity at the image plane of Green's arrangement is propor- 

tional to the square of the acoustic intensity transmitted through the 

object, and hence is higher than Smith-Brenden arrangement. However, 

this is not 3 too important advantage, since it can be compensated for 

by appropriately choosing the response characteristic of the optical 

detector. In general the two techniques produce images of comparable 

quality. 

2.3 LIQUID SURFACE DEFOJ?MATION WITH SIMULTANEOUS SCANNING OF THE 
ACOUSTIC SOURCE AND LIGHT DETECTOR (Synthetic Aperture) 

To avoid'the distortion of the reconstructed image, brought about 

by the extreme difference between the acoustic and light wavelengths, 

El-S&1g] and Hilderbrand, et al., r201 . used a synthetic aperture 

technique. In this scheme both the detector and the source are scanning 

with either different or the same velocities. The resultant is a holo- 

gram with an equivalent larger aperture and consequently less distortion 

in the reconstructed image, higher resolution and less speckle noise. 
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The hcst results for improvement are.obtaincd when the source.and the 

dctcctor are superimposed and move with the same velocity. Another 

method to reduce the speckle noise has been proposed by Gabor [*'I and 

is dcscribcd next. 

2.4 DYNAMIC SURFACE DEFORMATION 

When sound passes through a transparent thin film in an acoustic 

medium, no radiation pressure develops, but the film, nevertheless, moves 

with the sound. The excursion A is given by: 

-J LS A=----- 
fS 

(71 

Is and fS being the acoustic intensity and frequency, respectively. If 

the film is chosen to be reflective to light, the acoustic excitation 

passing through the film can be picked up as phase modulation on a 

coherent light beam. This is the main idea of Gabor E211 . A single short 

pulse is sent as 3 thin film into the body to be investigated. Light 

reflected from the film produces 3 Fresnel hologram. Its volume is 

limited to a very thin layer and hence the omnipresent speckle noise is 

eliminated from the system. 

2.5 INSTAXTANEOUS HOLOGRAMS 

A record of the instantaneous value of 3 dynamically deformed 

surface is equivalent to the information-carrying part of an on-axis 

hologram. Consecutive recording of two pulsed optical holograms spaced 

in time by an odd number of acoustic half-waves, and provided that the 

optical references of the two holograms differ by r/2, the reconstruction 

of such 3 composite hologram gives 3 phase-contrast image of the acoustic 
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image over the excited surface. [=I This in turn can be uscd'as an 

acoustic hologram. 

2.6 RAPID LASER BEAM SCANNING ._---_--- 

A laser beam scanned over a reflecting surface picks up the 

local acoustic excitation as phase modulation. Korpel, et al. r231 

demonstrated the idea'using a lens to image the exit pupil of the beam 

deflector onto the entrance pupil of the detector. A knife edge in front 

of the photodiode detector transforms the phase modulation of the beam 

into amplitude modulation, producing a signal proportional to the 

acoustic excitation. The signal is then processed and displayed on a 

CR tube from which a record can be made for optical reconstruction. 

This scheme, however, is limited in resolution and in aperture, and 

hence is usually limited to ultrasonic microscopy. 

2.7 ELECTRON BEAM SCANNING OF ACOUSTICALLY DEFORMED SURFACE .--. _----. ____ ._._ ._~_ _ ------ 

A less sensitive scheme than the laser scanning one is to image 

the acoustically deformed surface onto a photocathode. The electron 

,image is then scanned electrically. This scheme is capable of displaying 

either a hologram or its optical reconstruction, depending on the loca- 

tion of the photocathode in the optical system. I241 

2.8 PIEZOELECFRIC TRANSDUCERS 

Many materials (quartz, lithium sulfate, barium titanate, lead 

zirconate-titanate, lead metaniobate, etc.) are used as either trans- 

ducers or detectors. For imaging,the transducer (or the object) is 

scanned mechanically, [251 or by making use of an array of transducers. 

Since a piezoelectric transducer acts as a mosaic (transducers 

array), the acoustic wave incident on it produces an equivalent electric 
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imagc'across it. The transducer surface can then be scanned by an 

electron beam in order to generate a tclcvision-type signal. Acoustic 

television camera, based on this principle, was first made by Sokolov. P61 

Barium titanate or quartz has been used in such cameras. They have a 
-9 -3 good dynamic range (3x10 to 3x10 W/cm2) and a low sensitivity 

threshold of 2x10 -11 w/cy2. However, they have a limited aperture and 

a narrow angular field of view. Such tubes have been used to record and 

reconstruct acoustic holograms 1271 with real or simulated reference 

wave.[351 

2.9 PIEZORESISTIVE DETECTORS 1281 

,A*CdS(Cu) has high electric resistivity and its conductivity 

changes with an incident acoustic wave. A vidicon-type camera tube 

using such a target has mainly three advantages over the piezoelectric 

type tube: 

(a) It responds to a wide range of acoustic frequencies as 

opposed to the resonant frequency and odd harmonic response 

of the piezoelectric type. 

(b) 1.t has the capability of information storage. 

(c) It has higher sensitivity. 

2.10 ELECTROLUMINESCENT DETECTOR 

This is mainly a piezoelectric material with an electroluminescent 

coating having a proper thickness and, additionally, simulated for lumi- 

nescence with either a bias voltage or ultraviolet illumination. Such 

-6 a detector has a sensitivity of 10 - lo-' W/cm2. Voltages generated 

by the acoustic wave incident on the piezoclectric side, appear at the 

interface with the electroluminescent layer. 
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2.11 PO1lLMAN CELL [291 

A cell filled with xylene in which small aluminum flakes are 

suspended is used for acoustic image detection. In the presence of 

acoustic wave incident on the cell, the Al flakes arc aligned and they 

reflect light incident on the cell. With no acoustic wave prcsent, the 

flakes are randomly oriented and present a grey background by the rc- 

fleeted light; this background can be eliminated, in order to produce a 

better contrasting image,by applying a small bias voltage across the 

cell. 

2.12 LIQUID-CRYSTAL ACOUSTICAL-TO-OPTICAL CONVERSION CELL 130,311 

A thin layer of nematic liquid crystals sandwiched between a 

polarizer and a glass plate treated in such a way that the liquid 

crystals float freely in their low-energy state, and hence are aligned 

on one axis only. Since the liquid crystals are birefringent, they act 

as a wave plate, and when an acoustic wave is projected on such a liquid- 

crystal cell, the directions of the molecules change, causing a change 

in the optical transmission pattern. Thus the acoustic wave information 

is transformed into visible information. The sensitivity of such cells 

is demonstrated to be of the order of a few mW/cm', and the aperture 

attained so far is not too large (-25 cm square). The image resolution 

attained is reasonable and shows the fringes of an acoustical hologram 

made with 3 MHz wave. 

2.13 BRAGG DIFFRACTION 

This is a direct interaction of light and sound, capable of real 

time visualization of acoustic images. r321 A visible image of the insoni- 

fied object is formed when the angle 0 between the acoustic waves and the 
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direction of propagation of a coherent light beam satisfies Bragg's 

condition 

2XS Sin 8 = AL (8) 

where AL is the wavelength of the light inside the medium and Xs is the 

acoustic.wavelength. This necessitates an almost perpendicular illumi- 

nation of the acoustic field. The image formed is usually demagnified 

by the ratio of XL/As, and its resolution depends on the size of the 

light source. Such images are usually of low intensity. 

The maximum usable acoustical frequency in this technique is 

20-30 GHz and it is usually limited to microscopic objects. 

2.14 BIREFRINGENT CRYSTALS IN ACOUSTICAL MICROSCOPY 1333 

LiNb03 birefringent crystals are used as the acoustic propagating 

r341 medium. . The light propagates coaxially in the crystal in.an opposite 

direction to the acoustic wave. From the conservation of energy and 

momentum of the interacting fields, one finds that 

($1 = xL 
max "E - nO 

where n E and n 0 are indices of refraction of the extraordinary and 

ordinary waves in the crystal. This yields minimum acoustic frequency 

limit, and hence allows an extremely high frequency to be used in micro- 

scopic objects visualization. 

This technique, however, is limited to microscopic objects. 

2.15 MISCELLANEOUS OTHER TECIINIQUES 

Meindl, Walker and Maginess [361 developed a new acoustic camera 

for real time visualization of insonified optics. Such a camera uses 
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intcgrntcd clcctronic circuits, acoustic lenses, and electron beam 

scanning of dctcctor arrays. Although the technique is not based on the 

theory of holography, its exploration by itself and its possible applica- 

tion to holography is worth consideration. 

Microwave acoustics is also gaining keen interest by many workers 

in the field of acoustical imaging. One approach is the use of electronic 

scanning of a focussed acoustic beam, where the focussing and steering of 

the acoustic waves are produced by means of inhomogeneity and anisotropy 

induced by applied magnetic and electric fields. A collimated acoustic 

beam has been scanned over an angle of 8O in a uniform magnetic field, 

and a 12S-u-diameter acoustic beam has been produced by focussing in a 

nonuniform field. [371 

Various developments and refinements in acoustical imaging tech- 

niques has been reported recently in the 1975 Ultrasonic Symposium. 1383 

Further information on coherent optical processing of acoustical 

information can be found in reference 39. 
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APPENDIX B 

REAL-TIME, ERASABLE IMAGE RECORDING 
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The electronically focussed, electronically scanned piezoelectric 

mosaic array used for acoustical imaging plays the role of the photo- 

graphic films in detecting optical images. It is fast and sensitive. 

Another group of recording devices is the Ruticon (B-11 family. . 

Such devices are based on surface deformation using photoconductors like 

the thermoplastic sandwiches (B-2,3) the photomembrane light modulator (B-4) , 

and the Elmikon(B-s) . Surface-deformation imaging was first proposed for 

electron-beam addressing of deformable liquid or elastomer surfaces in the 

Eidophor systems (B-6) valves(B-2,7J8) J in light , and in the deformo- 

graphic storage and display tube (B-9,10) . 

The “Rut i can” temporarily store an input image ai a surface- 

deformation pattern on an elastomer layer. It is a layered structure 

consisting of a transparent conductive substrate, as shown in .Fig. B-l, 

a photoconductor layer (usually poly-N-vinyl-carbazole with a green 

organic sensitizer dye and an elastomer layer, usually of the siloxane- 

based variety). When the photoconductor is exposed to image light, the 

voltage distribution across the photoconductor changes, in turn causing 

changes in the electric field across the elastomer layer. The resulting 

distribution of electromechanical forces across the elastomer causes it 

to deform into a surface relief pattern corresponding to the image light. 

This deformation persists ‘after the optical image has been removed, as 

long as the field is maintained. Rut i cons are suitable for recording 

holograms and continuous-tone incoherent images at exposure levels of 

less than 300 erg cm2 (3x10-’ W/cm2 for 1 set exposure, 5~10~~ W/cm2 for 

1 min exposure, or 3x10 -4 for 0.1 sec. exposure), with a resolution 

in excess of 850 line pairs/mm. The “Rut i cons” are read out with a . 
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phase-sensitive optical system (Schlierren) as shown in Figure B-2: 

It can be used for incoherent-to-coherent image conversion, spatial 

filtering, correlation, wavelength conversion, image intensification, 

buffer storage of optical information, and real-time display (since 

they can be erased to less than 10 percent of their initial intensities 

within 10 msec. 

Although the use of dielectric liquid (with or without applied 

electric field) was demonstrated as a promising deformable surface to 

detect acoustical holograms and images, the Ruticon has never been 

tested for acoustical imaging. However, its optical behavior may prove 

useful for the hybrid system of nondestructive testing (Figure 1). 
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Figure B-l. Operation of Ruticon imaging devices. First, a 
charge is placed on the elastomer surface (a) 
by means of corona discharge, glow discharge, 
contact with a liquid metal, or a thin flexible 
metal layer dposited on the surface of the 
elastomer.Then, the photoconductor is exposed 
to image light (e.g-. a bar pattern is used in this 
illustration). The elastomer surface deforms into 
a relief pattern corresponding to the optical image, 
as seen in (b). After the removal of the optical 
image, (c), the surface-deformation pattern 
persists. (After N.K.Sheridan, Ref. B-l) 
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V M-AGE 

Figure B-2. An arrangement for reading out a  Ruticon, used to 
record and project incoheret images. Ppaque stop's1 
prevents the direct light from reaching the outpur 
image plane I 

8' 
By placing stops S 

forcal plane f lens L2(in place 
& S3 in the back 

0 2 Sl)a negative 
image of the input is obtained . When  glow-discharge 
or corona-discharge are used(before recording on 
the Ruticon)the Ruticon can be viewed by transmission, 
while images formed by the liquid-metal or metal- 
plated devices must-be read out by reflection 
(as this Figure illustrates) because of the opacity 
of the deformable metal electrode. 
(After N.K.Sheridon, Ref. B-l) 
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